Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1083, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316824

RESUMO

The scale at which low-carbon electricity will need to be deployed to meet economic growth, electrification, and climate goals in Africa is unprecedented, yet the potential land use and freshwater impacts from this massive build-out of energy infrastructure is poorly understood. In this study, we characterize low-impact onshore wind, solar photovoltaics, and hydropower potential in Southern Africa and identify the cost-optimal mix of electricity generation technologies under different sets of socio-environmental land use and freshwater constraints and carbon targets. We find substantial wind and solar potential after applying land use protections, but about 40% of planned or proposed hydropower projects face socio-environmental conflicts. Applying land and freshwater protections results in more wind, solar, and battery capacity and less hydropower capacity compared to scenarios without protections. While a carbon target favors hydropower, the amount of cost-competitively selected hydropower is at most 45% of planned or proposed hydropower capacity in any scenario-and is only 25% under socio-environmental protections. Achieving both carbon targets and socio-environmental protections results in system cost increases of 3-6%. In the absence of land and freshwater protections, environmental and social impacts from new hydropower development could be significant.

2.
Proc Natl Acad Sci U S A ; 120(4): e2204098120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36656853

RESUMO

The scale and pace of energy infrastructure development required to achieve net-zero greenhouse gas (GHG) emissions are unprecedented, yet our understanding of how to minimize its potential impacts on land and ocean use and natural resources is inadequate. Using high-resolution energy and land-use modeling, we developed spatially explicit scenarios for reaching an economy-wide net-zero GHG target in the western United States by 2050. We found that among net-zero policy cases that vary the rate of transportation and building electrification and use of fossil fuels, nuclear generation, and biomass, the "High Electrification" case, which utilizes electricity generation the most efficiently, had the lowest total land and ocean area requirements (84,000 to 105,000 km2 vs. 88,100 to 158,000 km2 across all other cases). Different levels of land and ocean use protections were applied to determine their effect on siting, environmental and social impacts, and energy costs. Meeting the net-zero target with stronger land and ocean use protections did not significantly alter the share of different energy generation technologies and only increased system costs by 3%, but decreased additional interstate transmission capacity by 20%. Yet, failure to avoid development in areas with high conservation value is likely to result in substantial habitat loss.

3.
J Autism Dev Disord ; 48(4): 1069-1080, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29181689

RESUMO

Given the emphasis on early screening for ASD, it is crucial to examine the concordance between parent report and clinician observation of autism-related behaviors. Similar items were compared from the First Year Inventory (Baranek et al. First-Year Inventory (FYI) 2.0. University of North Carolina, Chapel Hill, 2003), a parent screener for ASD, and the ADOS-2 Toddler Module (Lord et al. 2013), a standardized ASD diagnostic tool. Measures were administered concurrently to 12-month-olds at high and low risk for ASD. Results suggest that clinicians and parents rated behaviors similarly. In addition, both informants rated high-risk infants as more impaired in several social-communication behaviors. Furthermore, the format of questions impacted agreement across observers. These findings have implications for the development of a new generation of screening instruments for ASD.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/psicologia , Dissidências e Disputas , Diagnóstico Precoce , Pais , Médicos , Transtorno do Espectro Autista/enfermagem , Feminino , Humanos , Lactente , Masculino , Médicos/psicologia , Comportamento Social
4.
Proc Natl Acad Sci U S A ; 114(15): E3004-E3012, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348209

RESUMO

Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental-impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quickly served with "no-regrets" options-or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6-20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. Overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation.

5.
Ecol Appl ; 26(4): 1154-69, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27509755

RESUMO

Species distribution models (SDMs) have been criticized for involving assumptions that ignore or categorize many ecologically relevant factors such as dispersal ability and biotic interactions. Another potential source of model error is the assumption that species are ecologically uniform in their climatic tolerances across their range. Typically, SDMs treat a species as a single entity, although populations of many species differ due to local adaptation or other genetic differentiation. Not taking local adaptation into account may lead to incorrect range prediction and therefore misplaced conservation efforts. A constraint is that we often do not know the degree to which populations are locally adapted. Lacking experimental evidence, we still can evaluate niche differentiation within a species' range to promote better conservation decisions. We explore possible conservation implications of making type I or type II errors in this context. For each of two species, we construct three separate Max-Ent models, one considering the species as a single population and two of disjunct populations. Principal component analyses and response curves indicate different climate characteristics in the current environments of the populations. Model projections into future climates indicate minimal overlap between areas predicted to be climatically suitable by the whole species vs. population-based models. We present a workflow for addressing uncertainty surrounding local adaptation in SDM application and illustrate the value of conducting population-based models to compare with whole-species models. These comparisons might result in more cautious management actions when alternative range outcomes are considered.


Assuntos
Adaptação Fisiológica/fisiologia , Borboletas/fisiologia , Mudança Climática , Conservação dos Recursos Naturais/métodos , Modelos Biológicos , Primula/fisiologia , Animais , Espécies em Perigo de Extinção , Monitoramento Ambiental , Dinâmica Populacional
6.
Nature ; 534(7605): 106-10, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251285

RESUMO

The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and whether this control shows any commonality across the 160,000 moth and 17,000 butterfly species. Here, we use fine-scale mapping with population genomics and gene expression analyses to identify a gene, cortex, that regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast-evolving subfamily of the otherwise highly conserved fizzy family of cell-cycle regulators, suggesting that it probably regulates pigmentation patterning by regulating scale cell development. In parallel with findings in the peppered moth (Biston betularia), our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects.


Assuntos
Mimetismo Biológico/genética , Borboletas/genética , Genes de Insetos/genética , Pigmentação/genética , Asas de Animais/fisiologia , Animais , Mimetismo Biológico/fisiologia , Borboletas/citologia , Borboletas/fisiologia , Cor , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Fenótipo , Pigmentação/fisiologia , Seleção Genética/genética
7.
Proc Natl Acad Sci U S A ; 112(44): 13579-84, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483467

RESUMO

Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥ 1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km(2) of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km(2) of change. Less than 15% of USSE installations are sited in "Compatible" areas. The majority of "Incompatible" USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Modelos Teóricos , Energia Solar , Animais , California , Espécies em Perigo de Extinção , Geografia , Humanos
8.
J Insect Physiol ; 82: 1-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26255840

RESUMO

Physiological performance and tolerance limits in metazoans have been widely studied and have informed our understanding of processes such as extreme heat and cold tolerance, and resistance to water loss. Because of scaling considerations, very small arthropods with extreme microclimatic niches provide promising extremophiles for testing predictive physiological models. Corollaries of small size include rapid heating and cooling (small thermal time constants) and high mass-specific metabolic and water exchange rates. This study examined thermal tolerance and water loss in the erythracarid mite Paratarsotomus macropalpis (Banks, 1916), a species that forages on the ground surface of the coastal sage scrub habitat of Southern California, USA. Unlike most surface-active diurnal arthropods, P. macropalpis remains active during the hottest parts of the day in midsummer. We measured water-loss gravimetrically and estimated the critical thermal maximum (CTmax) by exposing animals to a given temperature for 1h and then increasing temperature sequentially. The standardized water flux of 4.4ngh(-1)cm(-2)Pa(-1), averaged for temperatures between 22 and 40°C, is among the lowest values reported in the literature. The CTmax of 59.4°C is, to our knowledge, the highest metazoan value reported for chronic (1-h) exposure, and closely matches maximum field substrate temperatures during animal activity. The extraordinary physiological performance seen in P. macropalpis likely reflects extreme selection resulting from its small size and resultant high mass-specific water loss rate and low thermal time-constant. Nevertheless, the high water resistance attained with a very thin lipid barrier, and the mite's exceptional thermal tolerance, challenge existing theories seeking to explain physiological limits.


Assuntos
Temperatura Alta , Ácaros/fisiologia , Animais , Tamanho Corporal , California , Ecossistema , Perda Insensível de Água
9.
Environ Sci Technol ; 49(4): 2013-21, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25541644

RESUMO

The land-use implications of deep decarbonization of the electricity sector (e.g., 80% below 1990 emissions) have not been well-characterized quantitatively or spatially. We assessed the operational-phase land-use requirements of different low-carbon scenarios for California in 2050 and found that most scenarios have comparable direct land footprints. While the per MWh footprint of renewable energy (RE) generation is initially higher, that of fossil and nuclear generation increases over time with continued fuel use. We built a spatially explicit model to understand the interactions between resource quality and environmental constraints in a high RE scenario (>70% of total generation). We found that there is sufficient land within California to meet the solar and geothermal targets, but areas with the highest quality wind and solar resources also tend to be those with high conservation value. Development of some land with lower conservation value results in lower average capacity factors, but also provides opportunity for colocation of different generation technologies, which could significantly improve land-use efficiency and reduce permitting, leasing, and transmission infrastructure costs. Basing siting decisions on environmentally-constrained long-term RE build-out requirements produces significantly different results, including better conservation outcomes, than implied by the current piecemeal approach to planning.


Assuntos
Conservação de Recursos Energéticos/economia , Conservação de Recursos Energéticos/métodos , Política Ambiental/economia , Energia Renovável/estatística & dados numéricos , California , Carbono/análise , Conservação dos Recursos Naturais , Eletricidade , Meio Ambiente , Energia Geotérmica , Vento
10.
Mol Ecol ; 23(11): 2686-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24766086

RESUMO

Local adaptation of populations could preclude or slow range expansions in response to changing climate, particularly when dispersal is limited. To investigate the differential responses of populations to changing climatic conditions, we exposed poleward peripheral and central populations of two Lepidoptera to reciprocal, common-garden climatic conditions and compared their whole-transcriptome expression. We found evidence of simple population differentiation in both species, and in the species with previously identified population structure and phenotypic local adaptation, we found several hundred genes that responded in a synchronized and localized fashion. These genes were primarily involved in energy metabolism and oxidative stress, and expression levels were most divergent between populations in the same environment in which we previously detected divergence for metabolism. We found no localized genes in the species with less population structure and for which no local adaptation was previously detected. These results challenge the assumption that species are functionally similar across their ranges and poleward peripheral populations are preadapted to warmer conditions. Rather, some taxa deserve population-level consideration when predicting the effects of climate change because they respond in genetically based, distinctive ways to changing conditions.


Assuntos
Aclimatação/genética , Mudança Climática , Genética Populacional , Lepidópteros/genética , Animais , Feminino , Expressão Gênica , Lepidópteros/classificação , Dados de Sequência Molecular , América do Norte , Dinâmica Populacional , Especificidade da Espécie , Temperatura , Transcriptoma
11.
BMC Evol Biol ; 10: 368, 2010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-21114846

RESUMO

BACKGROUND: Protein-coding change is one possible genetic mechanism underlying the evolution of adaptive wing colour pattern variation in Heliconius butterflies. Here we determine whether 38 putative genes within two major Heliconius patterning loci, HmYb and HmB, show evidence of positive selection. Ratios of nonsynonymous to synonymous nucleotide changes (ω) were used to test for selection, as a means of identifying candidate genes within each locus that control wing pattern. RESULTS: Preliminary analyses using 454 transcriptome and Bacterial Artificial Chromosome (BAC) sequences from three Heliconius species highlighted a cluster of genes within each region showing relatively higher rates of sequence evolution. Other genes within the region appear to be highly constrained, and no ω estimates exceeded one. Three genes from each locus with the highest average pairwise ω values were amplified from additional Heliconius species and races. Two selected genes, fizzy-like (HmYb) and DALR (HmB), were too divergent for amplification across species and were excluded from further analysis. Amongst the remaining genes, HM00021 and Kinesin possessed the highest background ω values within the HmYb and HmB loci, respectively. After accounting for recombination, these two genes both showed evidence of having codons with a signature of selection, although statistical support for this signal was not strong in any case. CONCLUSIONS: Tests of selection reveal a cluster of candidate genes in each locus, suggesting that weak directional selection may be occurring within a small region of each locus, but coding changes alone are unlikely to explain the full range of wing pattern diversity. These analyses pinpoint many of the same genes believed to be involved in the control of colour patterning in Heliconius that have been identified through other studies implementing different research methods.


Assuntos
Borboletas/genética , Evolução Molecular , Pigmentação/genética , Seleção Genética , Animais , Perfilação da Expressão Gênica , Genes de Insetos , Família Multigênica , Alinhamento de Sequência , Análise de Sequência de DNA , Asas de Animais/fisiologia
12.
J Exp Biol ; 213(Pt 15): 2551-6, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20639415

RESUMO

Locomotory muscles typically operate over a narrow range of contraction frequencies, characterized by the predominant fiber types and functional roles. The highest documented frequencies in the synchronous sound-producing muscles of insects (550 Hz) and toadfish (200 Hz) far exceed the contraction frequencies observed in weight-bearing locomotory muscles, which have maximum documented frequencies below 15-30 Hz. Laws of scaling, however, predict that smaller arthropods may employ stride frequencies exceeding this range. In this study we measured running speed and stride frequency in two undescribed species of teneriffiid mites from the coastal sage scrub of southern California. Relative speeds of both species [129-133 body lengths (BL)s(-1)] are among the fastest documented for any animal. Measured stride frequencies for both species far exceed those documented for any weight-bearing locomotory muscle, with measured values for one species ranging from 93 Hz at 25 degrees C to 111 Hz at 45 degrees C. Stride frequencies either closely approximate or, for one species, exceed predicted values based on an interspecific scaling of frequency and animal mass. Consequently, while the ultra-high frequencies of these muscles must depend on appropriately scaled kinetics of the calcium transient and contraction-relaxation cycle, these do not appear to limit the operating frequencies during running. The predicted low muscle forces operating at these very high frequencies evidently suffice for locomotion, probably because of the larger relative muscle force generated by smaller animals.


Assuntos
Locomoção/fisiologia , Ácaros/fisiologia , Músculos/fisiologia , Animais , Fenômenos Biomecânicos , Peso Corporal , Ácaros/classificação , Corrida , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...